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Abstract

The influence of swirl (flow rotation) on the stability of a rod in annular leakage flow is investigated. Under the

assumption of laminar flow and plane vibrations (no whirling), it is shown that the swirl acts, in effect, as an elastic

foundation with negative foundation stiffness, the magnitude being proportional to the mean circumferential flow rate

squared. Consequently, swirl always lowers the critical axial flow speed in case of divergence instability of a rod of finite

length. Numerical analysis is needed to predict the effect of swirl in case of flutter instability of a finite rod; this is not

performed here. However, for the flutter-like instability of travelling waves in an infinite rod-channel system, it is shown

analytically that swirl again always lowers the critical axial flow speed. Finally, it is found that by circumferential flow

alone, the travelling waves are extinguished at a certain flow rate, followed by a divergence-like instability.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The effects of swirl on the stability of slender axisymmetric structures (beams and shells) in axial flow through

nonnarrow gaps have been studied theoretically by Srinivasan (1971), Lai and Chow (1973), Chen and Bert (1977),

Cortelezzi et al. (2004), and experimentally by Dowell et al. (1974).

When the fluid gap is narrow, the flow is often referred to as a leakage-flow. By such flows, both fluid viscosity and

inertia effects are of importance, i.e. neither of them can be ignored. Leakage-flow-induced oscillations have received a

good deal of attention in recent years, with research being driven mainly, it seems, by ‘real world’ industrial problems

and concerns, often in connection with power-generation (Paı̈doussis, 2004).

Studies of axisymmetric leakage flow problems, involving a rigid centre-body with one or two degrees of freedom,

were carried out by Hobson (1982), Mateescu and Paı̈doussis (1987), and Li et al. (1998, 2002). Tanaka et al. (2001)

considered a system of connected rigid centre-bodies as a model of a high-speed train in a tunnel. Studies involving a

flexible centre-body were carried out by Paı̈doussis and Pettigrew (1979), Paı̈doussis et al. (1990), Fujita and Shintani

(2001), Fujita et al. (2004), and Langthjem et al. (2006).
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In parallel with these studies, problems involving plates in leakage-flow channels have also received a good deal of

attention. Rigid plates, involving again one or two degrees of freedom, were considered by Mulcahy (1988) and Inada

and Hayama (1990a,b). Inada and Hayama’s (1990a) analysis was extended to deal with a flexible plate by Nagakura

and Kaneko (1993). Large-amplitude plate vibrations, requiring a nonlinear analysis, were studied by Wu and Kaneko

(2005). An elastic sheet subjected to a one-sided leakage flow was studied by Hosoi and Mahadevan (2004), including an

investigation of a microscale set-up, where van der Waals (intermolecular) forces also are taken into consideration.

In returning to the axisymmetric configuration, it is noticed that the influence of swirl on the dynamic stability of the

central rod has received little, if any, attention, although it is of industrial concern. Against this background, the

purpose of this paper is to derive and discuss a few general, analytical results regarding the effects of swirl on the

stability of a slender, flexible rod in annular leakage flow.

It is anticipated that most industrial flows are turbulent. It might also be expected that the swirling flow will trigger

whirling, and thus three-dimensional, motions of the rod. But turbulence and three-dimensional vibrations will

complicate the analysis a great deal. To obtain simple, analytical results the present paper make the assumptions of

laminar flow and plane vibrations. Whirling instability should be considered at the next stage. The authors plan to

address this problem in a future publication.
2. The governing equations

2.1. Fluid equations

Consider an incompressible, laminar flow through the narrow gap between an outer rigid cylinder (of radius R þ H̄)

and an inner flexible rod (of radius R), described in terms of cylindrical polar coordinates ðr; y;Y Þ. The rod is assumed

to vibrate only in the y ¼ 0 plane . The mean (steady) fluid gap H̄ is so narrow, relative to the radius R and the length L

of the flexible rod, that the flow there resembles the flow within a boundary layer. This implies that the pressure

difference across the gap, in the radial ðrÞ direction, is negligibly small. Also, the effect of curvature can be ignored. The

flow is then ‘two-dimensional’, and can be described in terms of the coordinates ðX ;Y Þ, where X ¼ Ry, 0pyp2p.
The relations between pressure P, flow rate in circumferential ðX Þ direction QX , and flow rate in axial ðY Þ direction

QY , can be expressed as in Inada and Hayama (1990a), Li et al. (1998, 2002), Fujita and Shintani (2001):
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where H is the unsteady fluid gap, t is the time, r is the fluid density, and n is the fluid kinematic viscosity. The flow rates

QX and QX are obtained by integrating the flow velocities in the X and Y directions, respectively, over the fluid gap H.

The equation of continuity takes the form

qQX

qX
þ

qQY

qY
þ

qH

qt
¼ 0. (3)

To investigate the stability of the coupled fluid-structure system with respect to small perturbations, a set of linear

relations between pressure and flow rates is derived from (1), (2), and (3). To this end the variables (fluid gap H,

pressure P, and flow rates QX and QY ) are separated into steady and unsteady (disturbance, or perturbation) parts

(Inada and Hayama, 1990a):

HðX ;Y ; tÞ ¼ H̄ þ DHðX ;Y ; tÞ; PðX ;Y ; tÞ ¼ P̄ þ DPðX ;Y ; tÞ,

QX ðX ;Y ; tÞ ¼ Q̄X þ DQX ðX ;Y ; tÞ; QY ðX ;Y ; tÞ ¼ Q̄Y þ DQY ðX ;Y ; tÞ. ð4Þ

Here the quantities with an overbar are steady, and quantities with a D are unsteady. As indicated in the equations, the

steady quantities are assumed to be constants. Without swirl, Q̄X ¼ 0; this is the case considered in earlier works (Li

et al., 1998, 2002; Fujita and Shintani, 2001).

The continuity equation for the perturbations takes the form

qDQX

qX
þ

qDQY

qY
þ

qDH

qt
¼ 0. (5)
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Utilizing this equation, the linearized unsteady parts of (1) and (2) can be written as
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These equations differ from those derived in the just-mentioned earlier works only by the appearance of terms involving

Q̄X .

Next, differentiate (6) with respect to X and (7) with respect to Y , and add the two resulting equations; this gives
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a relation involving only the two perturbations DH and DP.

Let DH0ðY ; tÞ denote the deflection of the rod at position Y , in the vibrational plane y ¼ 0. The deflection in the

azimuthal direction y ¼ X=R is then given by DH0ðY ; tÞ cos y; see Fig. 1. Due to the narrow gap geometry, and to the

assumption of small-amplitude vibrations, the fluid gap and fluid pressure therein can be assumed to vary with y in the

same way (Hobson, 1982; Paı̈doussis, 2004), i.e.,

DHðX ;Y ; tÞ ¼ DH0ðY ; tÞ cos y; DPðX ;Y ; tÞ ¼ DP0ðY ; tÞ cos y. (9)

The fluid force acting on the rod in the vibrational plane y ¼ 0 is obtained by integrating, over the rod surface, the

projection of the pressure DP onto the plane y ¼ 0:

DF ðY ; tÞ ¼

Z 2p

0

DPR cos ydy. (10)

Integrating (8) in this way (i.e., multiplication by R cos y, followed by integration over y) gives, with application of (9),
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The great simplification from (8) is due to the disappearance, by integration, of the terms differentiated once with

respect to X .
H

θ 

R

∆H0(Y, t)cosθ
∆H0(Y, t)

Fig. 1. Steady and unsteady components of the fluid gap.
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2.2. Rod equation

The (Bernoulli–Euler type) equation of motion for a slender rod with Kelvin–Voigt-type internal damping, and

subjected to a distributed load DFðY ; tÞ, is given by (Paı̈doussis, 1998)

M
q2DH0

qt2
þ EnI

q5DH0

qtqY 4
þ EI

q4DH0

qY 4
¼ DF , (12)

where M is the mass per unit length, En is the coefficient of viscoelastic damping, E is the modulus of elasticity, and I is

the area moment of inertia.

2.3. Nondimensionalization

By utilizing the nondimensional variables and parameters

x ¼ y ¼
X

R
; y ¼

Y

L
; h ¼

DH0

H̄
; � ¼

R

L
; t ¼

t

L2

EI

M

� �1=2

,

f ¼ DF
L4

H̄EI
; b ¼ 12n

L

H̄

� �2
M

EI

� �1=2

,

q̄x ¼ Q̄X

L

H̄

M

EI

� �1=2

; q̄y ¼ Q̄Y

L

H̄

M

EI

� �1=2

, ð13Þ

Eq. (11) can be expressed in nondimensional form as
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where

k ¼
rpR3

H̄M
. (15)

The nondimensionalized version of (12) is

q2h

qt2
þ c

q5h

qtqy4
þ
q4h

qy4
¼ f . (16)
2.4. Coupling of fluid and structure governing equations

Combine, finally, Eqs. (14) and (16), through elimination of f , to give
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This equation shows explicitly that the circumferential flow (q̄x) acts as an elastic foundation (continuously and

uniformly distributed springs) with negative foundation stiffness.

2.5. Boundary conditions

Eq. (17) is, with the solution assumption hðy; tÞ ¼ expðltÞĥðyÞ, an ordinary differential equation of sixth order,

demanding six boundary conditions for a unique solution. The support conditions for the rod provide four. The

remaining two must be related to the fluid.

Inada and Hayama (1990a) formulated fluid boundary conditions which relate the pressure perturbation p to the

axial flow-rate perturbation qy and the rod deflection h. As the flow rate perturbations have been eliminated from (14),
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such boundary conditions cannot be evaluated, except in the ‘trivial’ cases with supported ends, where these conditions

are identically zero, and thus ‘automatically’ satisfied.

For geometries where the Bernoulli–Euler beam theory is legitimate, � ¼ R=L ¼ Oð 1
10
Þ. It is then reasonable to discard

terms multiplied by �2. Doing this, Eq. (17) is reduced to an equation of fourth order, and the four structural boundary

conditions suffice to determine a unique solution. But the pressure loss associated with a free end of the rod cannot be

accounted for by this approach. [This does however not affect the cases studied in the present paper.]
3. Energy balance

3.1. Divergence instability

Divergence is independent of time, and is governed by the terms in the last line of (17). An energy balance

equation can be obtained by multiplying these terms by the deflection hðyÞ, followed by integration over the rod

(from y ¼ 0 to y ¼ 1). The (stiffness-related) term multiplied by �2 will be ignored, as mentioned above. Also, for the

sake of a simple illustration, we will here consider only pinned–pinned and clamped–clamped boundary conditions.1 In

the first case,

hjy¼0 ¼ hjy¼1 ¼ 0;
q2h

qy2

����
y¼0

¼
q2h

qy2

����
y¼1

¼ 0; (18)

while in the second case,

hjy¼0 ¼ hjy¼1 ¼ 0;
qh

qy

����
y¼0

¼
qh

qy

����
y¼1

¼ 0. (19)

Divergence sets in when the total potential energy V of the system fails being positive definite. For both sets of

boundary conditions the divergence criterion (or critical state condition) becomes

V ¼ U� ðWx þWyÞ ¼ 0, (20)

with

U ¼
1

2

Z 1

0

q2h

qy2
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dy,
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2
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0

qh
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� �2
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HereU is the elastic (bending) energy of the rod, andWx andWy is the work done by the circumferential and axial flow

forces, respectively. All three terms are positive definite. Eqs. (20) and (21) show that the circumferential flow acts in a

way similar to the axial flow (i.e., always destabilizing), and that the former alone (i.e., q̄x40, q̄y ¼ 0) can initiate

divergence.

3.2. Flutter instability

Benjamin (1961) showed, for a system of two articulated fluid-conveying pipes, that flutter is initiated when

the energy delivered to the structure by nonconservative (circulatory) fluid forces over one oscillation period exceeds

the energy ‘drained’ by dissipative (damping) forces during that same period. A similar flutter criterion can be

written down for the present system. Here the nonconservative fluid forces are associated with the term 3kbq̄yqh=qy in

(17), which acts as a uniformly distributed tangential ‘follower’ force. [It is shown in Langthjem et al. (2006) that

flutter instability is possible with both rod ends supported, and that the flutter is a downstream travelling wave.]

As the circumferential flow-induced ‘elastic foundation’ involves only conservative forces, as shown in (20) and (21), it

will not enter directly in an energy-based flutter criterion. However, as dissipative forces are present, the circumferential

flow will affect the vibration modes, and thus indirectly affect the balance between nonconservative energy input and
1It will be seen that this does not affect the conclusions regarding the effect of the circumferential flow in any way, as the

corresponding energy term is not modified by the boundary conditions. These conclusions are also not affected by ignoring the term

multiplied by �2.
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dissipation.2 It does not seem possible, then, to establish a simple analytical criterion, like (20), for the influence of

circumferential flow on the flutter boundary. Numerical analysis is needed, and circumferential flow may well be

stabilizing in some parameter ranges, and destabilizing in others. The problem will not be considered further in this

paper.
4. The stability of travelling waves in a long rod-channel system

4.1. The general case

It may be of interest also to consider the effect of swirl on the stability of waves in a long (infinite) rod-channel

system. As the length L then is meaningless, we replace L by the rod radius R in the nondimensional parameters (13).

The parameter � accordingly takes the value of 1.

It is assumed that the rod displacement hðy; tÞ can be represented by the Fourier integral

hðy; tÞ ¼
Z 1

�1

AðkÞ expðiky � iotÞdk, (22)

corresponding to a superposition of travelling waves. The single wave component

hkðy; tÞ ¼ AðkÞ expðiky � iotÞ, (23)

having wave number k, is then governed by the equation (dispersion relation)

�o2ð1þ kþ k2
Þ þ o½2kkq̄y � ifck4

ð1þ k2
Þ þ kbg� þ k4

ð1þ k2
Þ � kq̄2x � k2kq̄2

y þ i3kkbq̄y ¼ 0. (24)

Solving this equation with respect to o gives

o ¼
1

2â
�b̂ � b̂

2
� 4âĉ

� �1=2
� �

, (25)

with

â ¼ �ð1þ kþ k2
Þ; b̂ ¼ 2kkq̄y � ifck4

ð1þ k2
Þ þ kbg,

ĉ ¼ k4
ð1þ k2

Þ � kq̄2x � k2kq̄2y þ i3kkbq̄y. ð26Þ

For the particular wave component in focus (with wavenumber k) it is seen that the solution o for which the real part

is positive corresponds to a forward (downstream) travelling wave; the solution for which the real part is negative

corresponds to a backward (upstream) travelling wave. Instability sets in (the amplitude will grow ‘unbounded’) if the

imaginary part of o becomes positive. With the real part ReðoÞa0, this instability is equivalent to flutter in a finite

system.

4.2. Case of undamped rod in inviscid fluid flow

If, for the moment, we consider an undamped rod (c ¼ 0) in an inviscid fluid flow (b ¼ 0), an instability criterion

(related to a certain wavenumber) can easily be obtained, because the coefficients â, b̂, and ĉ are then all real. Instability

will set in when b̂
2
� 4âĉo0. Inserting the coefficients (26) into this inequality gives that a wave with wavenumber k is

unstable when

ð1þ kþ k2
Þk4

ð1þ k2
Þoð1þ kþ k2

Þkq̄2x þ k2
ð1þ k2

Þkq̄2y. (27)

Any wavenumber k is present in an infinite rod, as expressed by (22). When k ! 0, (27) shows that any nonzero value

of either the circumferential flow rate q̄x or the axial flow rate q̄y will result in instability. Stable waves are possible if, for

example, the rod is supported by an elastic foundation, which can be represented mathematically by replacing kq̄2x by

kq̄2x � Z, where Z is the nondimensional foundation stiffness.

The critical flow rate couple ðq̄2x; q̄
2
yÞcrit in the presence of an elastic foundation can be determined as follows: first the

value of k which corresponds to the minimum of the discriminant D ¼ b̂
2
� 4âĉ must be determined. This value is then
2In a nondissipative, circulatory system, the flutter boundary will not be affected by an elastic foundation if the stiffness distribution

of the foundation is similar to the mass distribution (Smith and Herrmann, 1972; Sundararajan, 1974). See also Elishakoff (2005) for a

recent, comprehensive review of this topic.
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to be inserted into the equation D ¼ 0, wherefrom ðq̄2x; q̄
2
yÞcrit can be determined (Roth, 1964). Analytical determination

of the k-value which corresponds to the minimum of D is not trivial, as D is a fourth-order polynomial in k2, and it will

not be pursued further here.
4.3. The effect of swirl by a real (damped) rod in a real (viscous) fluid flow

When structural damping and fluid viscosity are taken into account (c40; b40) the coefficients b̂ and ĉ are complex,

and a simple instability criterion like (27) cannot be derived. If the axial flow is considered as the ‘main’ flow, it is

however possible to show analytically that the circumferential flow always acts to destabilize the system.

This is done by showing that the imaginary part of the derivative qo=qq̄x, evaluated at the onset of instability

(ImðoÞ ¼ 0) always is positive. This means that an increase in q̄x always will result in a lower critical value of q̄y.

Differentiating (25) with respect to q̄x gives

qo
qq̄x

¼ �
2kq̄x sgnðq̄xÞ

ðb̂
2
� 4âĉÞ1=2

. (28)

At the instability onset, where ImðoÞ ¼ 0, we have from (25) that Imf�ðb̂
2
� 4âĉÞ

1
2g ¼ Imðb̂Þ. Then,

Im �
1

ðb̂
2
� 4âĉÞ1=2

" #
¼ Im

1

2kkq̄y � i ck4
ð1þ k2

Þ þ kb
� �

" #
¼

ck4
ð1þ k2

Þ þ kb

f2kkq̄yg
2 þ fck4

ð1þ k2
Þ þ kbg2

. ð29Þ

Inserting this result into (28) gives that

Im
qo
qq̄x

����
Im o¼0

¼
2kq̄xsgnðq̄xÞfck4

ð1þ k2
Þ þ kbg

f2kkq̄yg
2 þ fck4

ð1þ k2
Þ þ kbg2

40, (30)

as should be demonstrated.
4.4. Case of circumferential flow alone

We will finally consider the effect of circumferential flow alone, i. e., the axial flow rate q̄y ¼ 0. In this case, Eq. (25)

can be written as

o ¼
1

2z0
� z1 � ðz2 þ z23Þ
� �1=2

� iz3

h i
, (31)

with

z0 ¼ 1þ kþ k2; z1 ¼ 4ð1þ kþ k2
Þk4

ð1þ k2
Þ z2 ¼ 4ð1þ kþ k2

Þkq̄2x; z3 ¼ ck4
ð1þ k2

Þ þ kb. (32)

At sufficiently small values of q̄x, z14z2 þ z23, assuming that c and b are small numbers, and that ka0. The quantity

fz1 � ðz2 þ z23Þg
1=2 will then be a real number. The ‘‘þ’’ and the ‘‘�’’ solution correspond to a downstream and an

upstream travelling wave, respectively, and as z340, they are both asymptotically stable.

When q̄x is increased up to a certain level, the equality z1 ¼ z2 þ z23 will be fulfilled, and neither wave (of that

particular wave number k) can exist. When q̄x is increased further from this point, both roots of (31) will be purely

imaginary, and negative.

The instability limit is reached when z2 becomes equal to z1. By continued increase, z1 � z2 will become smaller than

zero, and one of the purely imaginary roots will become positive, initiating a divergence-type of instability. This

instability will appear to come ‘out of the blue’, because in the range z1 � z23oz2oz1 no waves (again, of that particular

wavenumber k) exist.

Inserting the coefficients (32) in the ‘instability condition’ z1 ¼ z2 gives the critical flow rate as q̄2x ¼ k4
ð1þ k2

Þ=k,
showing that any nonzero circumferential flow rate will initiate instability for k ! 0. If the rod is supported by an

elastic foundation with nondimensional stiffness Z, as considered also in Section 4.2, the critical flow rate is found to be

ðq̄xÞcrit ¼ ðZ=kÞ1=2.
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5. Conclusions

A number of results related to the effect of swirl by annular leakage flow have been obtained. The main findings can

be summarized as follows.
(1)
 Swirl acts, in effect, as an elastic foundation with negative foundation stiffness, the magnitude being proportional to

the mean circumferential flow rate squared. Accordingly, swirl acts to destabilize the system in the case of

divergence instability of a finite rod, i.e. swirl lowers the critical value of the axial flow rate.
(2)
 Swirl is also destabilizing in the case of a flutter-type of instability of an infinitely long rod, i.e. swirl again lowers the

critical value of the axial flow rate.
(3)
 In an infinitely long rod with circumferential flow alone (no axial flow), the travelling waves are extinguished at a

certain flow rate, followed by a divergence-type of instability.
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